Hereditary Ovarian Cancer: Why it Matters to the General OB/GYN

Noah D. Kauff, MD, FACOG
Director, Ovarian Cancer Screening and Prevention
Gynecology and Clinical Genetics Services
Memorial Sloan-Kettering Cancer Center
Disclosures

- Consultant or Advisory Role: Pfizer
- Expert Testimony: Pfizer
- I will be discussing off-label use of oral contraceptives.
Objectives

• At the end of this course, the learner should be able to:

 – Identify women who should be considered for hereditary cancer risk assessment.

 – Choose among available options for the management of women with an inherited predisposition towards ovarian and related cancers.
<table>
<thead>
<tr>
<th>Cancer</th>
<th>Number of New Cases</th>
<th>% Caused by Single Gene Mutations</th>
<th>Number of Inherited Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>232,340</td>
<td>7-10%</td>
<td>16,000-23,000</td>
</tr>
<tr>
<td>Lung</td>
<td>110,110</td>
<td><1%</td>
<td>< 1000</td>
</tr>
<tr>
<td>Colorectal</td>
<td>69,140</td>
<td>6%</td>
<td>4,150</td>
</tr>
<tr>
<td>Uterine</td>
<td>49,560</td>
<td>5%</td>
<td>2,475</td>
</tr>
<tr>
<td>Ovary</td>
<td>22,240</td>
<td>10%</td>
<td>2,200</td>
</tr>
</tbody>
</table>
Cancer Susceptibility Syndromes That May Be Encountered by Gynecologists

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Genes Associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary Breast Ovarian Cancer</td>
<td>BRCA1, BRCA2</td>
</tr>
<tr>
<td>Cowden Syndrome</td>
<td>PTEN</td>
</tr>
<tr>
<td>Lynch / Hereditary Non-Polyposis Colon Cancer (HNPCC)</td>
<td>MLH1, MSH2, MSH6, PMS2, EPCAM</td>
</tr>
<tr>
<td>Familial Adenomatous Polyposis (FAP)</td>
<td>APC (Dominant)</td>
</tr>
<tr>
<td></td>
<td>MYH (Recessive)</td>
</tr>
<tr>
<td>Li-Fraumeni Syndrome</td>
<td>p53</td>
</tr>
<tr>
<td>Von Hippel-Lindau</td>
<td>VHL</td>
</tr>
</tbody>
</table>
Causes of Hereditary Susceptibility to Ovarian Cancer

Sporadic

Hereditary (~10%)

Other single genes (<5%)

BRCA1 (~70-75%)

HNPCC (~2%)

BRCA2 (~20%)
Who Is at Inherited Risk?

How do we find the 5-10% of individuals at risk in this group?
Tumor Suppressor Genes

Normal genes (prevent cancer)

1st mutation (susceptible carrier)

2nd mutation or loss (leads to cancer)
Indicators of a Possible Hereditary Cancer Syndrome

• Early age at diagnosis (e.g. breast cancer <50)
• Same type of cancer in 2 or more close relatives on the same side of the family
• Combination of cancers indicative of a specific syndrome (e.g. colon and endometrium)
• Multiple primary tumors in a single individual / bilateral disease
• Single cases of cancer in which a high proportion is inherited (e.g. high grade serous ovarian/fallopian tube ca, medullary thyroid ca)
Hereditary vs. Sporadic Breast Cancer

Hereditary
- Two or more individuals with breast cancer before age 50 or ovarian cancer at any age
- Ashkenazi individuals with breast cancer prior to 50 or ovarian cancer at any age
- Ovary, dx. 42
- Breast, dx. 43
- Breast, dx. 51

Sporadic
- No breast cancer diagnosed before age 50
- No ovarian cancer in lineage
- No clear pattern on either side of family
- Breast, dx. 65
Assess Family History

• Three generation pedigree is ideal, but time consuming to generate.

• Genetic Counselors and appropriately trained physician extenders can assist in this process.
Family History Screen

- Family history screen for first visit:
 - “Does anyone in your family; parents, grandparents, siblings, aunts, uncles or first cousins; have breast, ovary, uterine or colon cancer?”

- Family history screen for subsequent visits:
 - “Has any close relative been diagnosed with breast, ovarian, uterine, or colon cancer since I last saw you?”
Hereditary Breast-Ovarian Cancer Syndrome
BRCA1-Associated Cancers: Lifetime Risk

Breast cancer 50%–85% (often early age at onset)

Second primary breast cancer 40%–60%

Ovarian cancer 35%–45%

Possible increased risk of other cancers (eg, prostate)
BRCA2-Associated Cancers: Lifetime Risk

- Increased risk of prostate, laryngeal, and pancreatic cancers
- Breast cancer (40%−85%)
- Ovarian cancer (10%−27%)
- Male breast cancer (6%)
Which Patients Should be Referred for Genetic Counseling?

Patients with *greater than an approximately 20–25% chance* of having an inherited predisposition to breast cancer and ovarian cancer and for whom genetic risk assessment *is recommended*:

- Women with a personal history of both breast cancer and ovarian cancer
- Women with ovarian cancer and a close relative† with ovarian cancer or premenopausal breast cancer or both
- Women with breast cancer prior to age 40 or ovarian cancer at any age who are of Ashkenazi Jewish ancestry
- Women with a close relative† with a known *BRCA1* or *BRCA2* mutation

Patients with \textit{greater than an approximate 5–10\% chance} of having an inherited predisposition to breast cancer and ovarian cancer and for whom genetic risk assessment \textit{may be helpful}:

- Women with breast cancer at age 40 years or younger
- Women with breast cancer at age 50 years or younger and a close relative† with breast cancer at age 50 years or younger
- Women of Ashkenazi Jewish ancestry with breast cancer at age 50 years or younger
- Women with ovarian, fallopian tube or primary peritoneal cancer of high grade, serous histology at any age

Prevalence of Germline $BRCA$ Mutations in Serous Ovarian Cancer

- **Risch HA, et al. AJHG 2001**
 - 56 (16.4%) of 341 unselected serous ovarian ca diagnosed in Ontario from 1995-6

 - 20 (16.5%) of 121 unselected serous ovarian ca diagnosed in Tampa area from 2000-2003

- **Alsop K, et al. JCO 2012**
 - 98 (17.1%) of 574 incident high-grade serous ovarian ca ascertained as part of the Australia Ovarian Cancer Study from 2002-2006
Prevalence of Germline BRCA Mutations in Triple Neg Breast Ca Diagnosed Prior to Age 50

 – 11 (19%) of 58 unselected TN breast cancers diagnosed prior to age 50 from two UK series

 – 13 (15%) of 86 unselected TN breast cancers diagnosed prior to age 50 presenting to a community oncology network in TX from 2005-2010
Hereditary Cancer Risk Assessment is a Process

This process should:

- Include assessment of risk, education and counseling;
- Be conducted by a physician, genetic counselor or other provider with expertise in cancer genetics;
- May include genetic testing if desired after appropriate counseling and consent is obtained.
Risk-Reduction Strategies

– Breast
 • Intensive Surveillance (Mammogram, U/S, MRI)
 • Chemoprevention (Tamoxifen, Raloxifene, Aromatase Inhibitors)
 • Risk-Reducing Surgery (Mastectomy, Oophorectomy)

– Ovary
 • Chemoprevention (Oral Contraceptives)
 • Risk-Reducing Surgery (Salpingo-Oophorectomy)
Intensive Surveillance
Mammogram Screening in BRCA Mutation Carriers

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Sensitivity</th>
<th>Invasive Cancer</th>
<th>Lymph Node Metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brekelman, et al.</td>
<td>128</td>
<td>56%</td>
<td>5/9</td>
<td>56%</td>
</tr>
<tr>
<td>J Clin Oncol 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheuer, et al.</td>
<td>251</td>
<td>42%</td>
<td>5/12</td>
<td>25%</td>
</tr>
<tr>
<td>J Clin Oncol 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prospective Studies of MRI Screening for Breast Cancer in Women at with BRCA1/2 Mutations

<table>
<thead>
<tr>
<th></th>
<th>Dutch MRISC study, Kriege et al, 2004</th>
<th>Toronto, Canada, Warner et al, 2004</th>
<th>MARIBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of women</td>
<td>1909</td>
<td>236</td>
<td>649</td>
</tr>
<tr>
<td>No. of BRCA 1/2 carriers</td>
<td>354</td>
<td>236</td>
<td>120</td>
</tr>
<tr>
<td>MRI sensitivity (95% CI)</td>
<td>71.1%</td>
<td>77.3%</td>
<td>77%</td>
</tr>
<tr>
<td>MRI specificity</td>
<td>89.8%</td>
<td>95.4%</td>
<td>81%</td>
</tr>
<tr>
<td>Mammogram sensitivity</td>
<td>40%</td>
<td>36.4%</td>
<td>40%</td>
</tr>
<tr>
<td>Mammogram specificity</td>
<td>95%</td>
<td>99.8%</td>
<td>93%</td>
</tr>
</tbody>
</table>

MRI Breast Screening

Normal Mammogram
Performed at Time of MRI

MRI Detected
Occult Stage I Breast Cancer
1275 women with a BRCA1 or BRCA2 mutation

- 445 women in MRI Trial; 830 in Comparison Group
- Followed for mean of 3.2 yrs, cancer incidence estimated at 6 yrs

DCIS or Stage I
- 13.8% in MRI; 7.2% in Mammo (p=0.01)

Stage II-IV
- 1.9% in MRI; 6.6% in Mammo (p=0.02)
- HR = 0.30 (95% CI 0.12 – 0.78, p=0.008)
Chemoprevention
Oral Contraceptives in *BRCA* Mutation Carriers: Impact on Ovarian Cancer Risk

• Narod, et al. NEJM 1999
 – HR for Ovarian Ca — 0.5 (95% CI; 0.3-0.8)

• Modan, et al. NEJM 2001
 – No protective effect against Ovarian Cancer
 • Only 19 (8%) of carriers with ovarian ca used OC’s for 5 years

 – After 6 or more years of use: OR = 0.62 (95% CI, 0.35-1.09)
Oral Contraceptives in BRCA Mutation Carriers: Impact on Breast Cancer Risk

- Narod S, et al. JNCI 2002
 - OC’s may be associated with an increased risk of breast ca in BRCA1 mutations carrier (OR 1.20; 95%CI 1.02-1.40)

- Brohet RM, et al. JCO 2007
 - ↑ breast ca risk with ever use of OC (HR 1.47; 95% CI: 1.16 – 1.87)
 - Longer duration of use, especially prior to first pregnancy, was associated with increased risk.
Risk-Reducing Surgery
Risk-Reducing Salpingo-Oophorectomy

Kauff ND, et al. NEJM. 2002; 346:1609-15
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N</th>
<th>Ovarian Cancer</th>
<th>Breast Cancer HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kauff, et al.</td>
<td>Prospective</td>
<td>98</td>
<td>HR = 0.15</td>
<td>HR = 0.32</td>
</tr>
<tr>
<td>NEJM 2002</td>
<td></td>
<td></td>
<td>(95% CI: 0.02-1.31)</td>
<td>(95% CI: 0.08-1.20)</td>
</tr>
<tr>
<td>Rebbeck, et al.</td>
<td>Retrospective</td>
<td>259</td>
<td>HR = 0.04</td>
<td>HR = 0.53</td>
</tr>
<tr>
<td>NEJM 2002</td>
<td></td>
<td></td>
<td>(95% CI: 0.01-0.16)</td>
<td>(95% CI: 0.33-0.84)</td>
</tr>
<tr>
<td>Rutter, et al.</td>
<td>Retrospective</td>
<td>251</td>
<td>OR = 0.29</td>
<td></td>
</tr>
<tr>
<td>JNCI 2003</td>
<td></td>
<td></td>
<td>(95% CI: 0.12-0.73)</td>
<td></td>
</tr>
<tr>
<td>Finch, et al.</td>
<td>Combined</td>
<td>1045</td>
<td>HR = 0.20</td>
<td></td>
</tr>
<tr>
<td>JAMA 2006</td>
<td></td>
<td></td>
<td>(95% CI: 0.07-0.58)</td>
<td></td>
</tr>
<tr>
<td>Kauff, et al.</td>
<td>Prospective</td>
<td>881</td>
<td>HR = 0.12</td>
<td>HR = 0.53</td>
</tr>
<tr>
<td>JCO 2008</td>
<td></td>
<td></td>
<td>(95% CI: 0.03-0.41)</td>
<td>(95% CI: 0.29-0.96)</td>
</tr>
<tr>
<td>Domchek, et al.</td>
<td>Combined</td>
<td>939</td>
<td>HR = 0.14</td>
<td>HR = 0.54</td>
</tr>
<tr>
<td>JAMA 2010</td>
<td></td>
<td></td>
<td>(95% CI: 0.04-0.59)</td>
<td>(95% CI: 0.37-0.79)</td>
</tr>
</tbody>
</table>
Mutations in *BRCA1* and *BRCA2* Cause Distinct Cancer Susceptibility Syndromes

- **Breast Cancer**
 - *BRCA1*: 10-24% ER positive
 - *BRCA2*: 65-79% ER positive

- **Ovarian Cancer**
 - *BRCA1*: 34-46% risk (to age 70)
 - *BRCA2*: 10-27% risk (to age 70)
Risk of *BRCA*-associated Gynecologic Cancer following RRSO

<table>
<thead>
<tr>
<th></th>
<th>RRSO N</th>
<th>Cancers</th>
<th>Surveillance N</th>
<th>Cancers</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1 & BRCA2</td>
<td>509</td>
<td>3</td>
<td>283</td>
<td>12</td>
<td>0.12</td>
<td>0.03 – 0.41</td>
<td>0.001</td>
</tr>
<tr>
<td>BRCA1</td>
<td>325</td>
<td>3</td>
<td>173</td>
<td>10</td>
<td>0.15</td>
<td>0.04 – 0.56</td>
<td>0.005</td>
</tr>
<tr>
<td>BRCA2</td>
<td>184</td>
<td>0</td>
<td>110</td>
<td>2</td>
<td>0.00</td>
<td>Not Estimable</td>
<td></td>
</tr>
</tbody>
</table>

Risk of BRCA-associated Breast Cancer following RRSO

<table>
<thead>
<tr>
<th></th>
<th>RRSO</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Cancers</td>
</tr>
<tr>
<td>BRCA1 & BRCA2</td>
<td>303</td>
<td>19</td>
</tr>
<tr>
<td>BRCA1</td>
<td>190</td>
<td>15</td>
</tr>
<tr>
<td>BRCA2</td>
<td>113</td>
<td>4</td>
</tr>
</tbody>
</table>

Impact of RRSO on ER-positive vs. ER-negative Breast Cancer

(BRCA1/BRCA2 Combined – Adjusted for Mutation Type)

<table>
<thead>
<tr>
<th></th>
<th>ER-positive</th>
<th></th>
<th></th>
<th>ER-Negative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Events</td>
<td>HR (95% CI)</td>
<td>P</td>
<td>Events</td>
</tr>
<tr>
<td>RRSO</td>
<td>300</td>
<td>2</td>
<td>0.22 (0.05-1.05)</td>
<td>0.058</td>
<td>14</td>
</tr>
<tr>
<td>No RRSO</td>
<td>284</td>
<td>7</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Surgical Considerations
Primary Peritoneal Cancer Arising in an Ovarian Remnant

Essential to enter the retroperitoneal space to isolate the ovarian blood supply and ligate it distal to its insertion into the ovary
• Ovarian vessel ligation with a retroperitoneal approach and a 2 cm margin.
As much Fallopian tube as possible is removed.
Prevalence of Occult Cancer in Women with Mutations in *BRCA1* or *BRCA2*

<table>
<thead>
<tr>
<th>Study</th>
<th>Pts (n)</th>
<th>Occult Cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebbeck, et al. 2005</td>
<td>259</td>
<td>6 (2.3%)</td>
</tr>
<tr>
<td>Kauff, et al. 2002</td>
<td>98</td>
<td>3 (3.1%)</td>
</tr>
<tr>
<td>Leeper, et al. 2002</td>
<td>17</td>
<td>4 (23.5%)</td>
</tr>
<tr>
<td>Lu, et al. 2000</td>
<td>22</td>
<td>4 (18.2%)</td>
</tr>
<tr>
<td>Powell, et al. 2005</td>
<td>67</td>
<td>7 (10.4%)</td>
</tr>
<tr>
<td>Olivier, et al. 2005</td>
<td>65</td>
<td>5 (7.7%)</td>
</tr>
<tr>
<td>Finch, et al. 2006</td>
<td>490</td>
<td>11 (2.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>918</td>
<td>40 (4.4%)</td>
</tr>
</tbody>
</table>
What is SEE-FIM?
(Sectioning and Extensively Examining the Fimbriated end)

- Distal 2cm of tube
 - Transect from rest of tube

- Cut into 4 pieces longitudinally
 - Section transversely every 2-3mm

- Remainder of tube
 - Section transversely every 2-3mm
Timing of Procedure

- **BRCA1**: 11-21% risk of ovarian cancer by age 50.\(^1,2\)
- **BRCA2**: 2-3% risk of ovarian cancer by age 50.\(^1,2\)
- Oophorectomy after menopause is not associated with a decrease in breast cancer risk.\(^3\)

What is the Role of HRT?

• Increase in endocrine and sexual symptomatology is common following RRSO.¹

• Sexual symptomatology is the single biggest predictor of satisfaction with RRSO.²

• Data from WHI likely does not apply to women having premenopausal RRSO.

HRT following Risk-Reducing Salpingo-Oophorectomy

- HRT may reduce the protective effect of RRSO on breast cancer risk.
 - HR = 1.35 (95% CI, 0.16-11.58)

- RRSO with short term HRT was still associated with a profound reduction in breast cancer risk in carriers of BRCA1 and BRCA2 mutations.
 - HR = 0.37 (95% CI, 0.14-0.96)
What has RRSO taught us about the pathogenesis of BRCA-associated ovarian, fallopian tube and primary peritoneal cancer?
Ovarian Tumorigenesis – 2002

- Risk factors
 - Nulliparity
 - Early Menarche
 - Late Menopause
 - Talc

- Protective Factors
 - Pregnancy
 - Lactation
 - Oral Contraceptive Use

Drapkin and Hecht, Women’s Oncol Rev 2002
What is the Role of Risk-Reducing Salpingectomy?
Is it Reasonable to Remove Just the Fallopian Tubes for Risk-Reduction?

- We do not know the latency period from time of genetic changes in the fallopian tube to development of invasive pelvic serous cancer.
- We do not know what proportion of pelvic cancers are explained by this mechanism.
- Deferring oophorectomy will negate the benefit conferred by RRSO against breast cancer.
Challenges for the Future

• Can we better identify individuals at risk for ovarian and related cancers as well as better determine the timing and magnitude of those risks.

• Can we provide better care of sequelae of risk-reduction approaches?

• Can we make improvements in gynecologic cancer screening to allow this to become a viable alternative to risk-reduction surgery?
Challenges for the Future

• Will advances in chemoprevention approaches as well as our basic understanding of the molecular progression of ovarian and breast cancer ultimately allow us to render the surgical removal of at-risk organs obsolete?
Acknowledgements

Department of Defense Ovarian Cancer Research Program

National Cancer Institute

Prevention, Control and Population Research Program at Memorial Sloan-Kettering Research Center

Project Hope for Ovarian Cancer Research and Education